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Abstract—Accurate and robust state estimation is a funda-
mental problem in signal processing. Particle filter is an effective
tool to solve the filtering problem in nonlinear stochastic dynamic
systems. However, when the system is mean-field dependent and
the data is high-dimensional in spatial and temporal domain,
the estimator may become inaccurate or even diverge. In this
paper, we propose a Correlative Mean-Field (CMF) filter for a
general class of nonlinear systems. The algorithm iterates in four
stages: decomposition, sampling, prediction, and correction. An
expectation term is incorporated into system transition model
to capture the mean-field property of the sequential data. By
exploring the property of the circulant matrix and its relationship
with Fast Fourier Transform (FFT), sufficient virtual samples are
efficiently generated by cyclic shifts of original samples in the
spacial domain. The correction is modeled as an online learning
problem where the sample weights are updated by the correlation
output of a regression function. Optimal states are estimated
by the weighted sum. We perform simulations to illustrate that
under some conditions our estimator converges while traditional
mean-field-free filters diverge. Finally, we implement CMF in
vehicle tracking tasks and tested on 12 traffic video sequences.
Experiment results show that CMF outperforms the existing
mean-field-free filters.

Keywords—vehicle tracking, mean-field filter, circulant matrix,
fourier transform

I. INTRODUCTION

Given noisy observation of a signal, many problems involve
estimating real system states to extract meaningful informa-
tion. In Bayesian approaches [1], the solution is defined to be
the posterior probability distribution of the system states given
its observation history. It is a complete solution for the state
estimation as it reflects the entire uncertainty, and the optimal
state is estimated by the expectation of the distribution [2].

With assumptions of linearity, Gaussianity or finite state
space, analytical approaches such as Kalman filter [3] and
hidden Markov models [4] can achieve closed-form solutions.
However, those assumptions are not valid in many realistic
tasks. Particle filter (PF) [5], as a powerful nonlinear estimator,
gives an alternative to the realistic situations without those
assumptions. In each iteration, the posterior is approximated
by a large number of random samples. Those samples are
propagated over time based on the system dynamic. When
new observations come, particle weights are refined by the
likelihood function. Optimal state is estimated by the particle
with highest weight. Despite the great success achieved, par-
ticle filter is still risky in some cases [6]. A dynamical system
is mean-field dependent [7] if it involves probability measure
of the state variable in the transition kernel to the next state.
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Fig. 1: Cyclic shifts of an original sample

In this situation, mean-field free approaches like PF, EnKF [8]
and PSO [9] may fail, which will be shown in our simulations.

The contributions of this paper are summarized as follows:
1) Based on our previous work [10], we propose a Correla-

tive Mean-Field (CMF) filtering framework, which recursively
estimates the filtering distribution in four stages: decomposi-
tion, sampling, prediction and correction.

2) We generate sufficient virtual samples by cyclic shifts of
the original sample. By exploring the properties of circulant
matrix, sampling and correction are efficiently computed in
Fourier domain, which is a novelty and improvement over [11].

3) We model correction stage as a learning problem. Sample
weights are updated by the response of a regression function.

4) We test our algorithm in both simulations and real exper-
iments on video sequences. Experimental results demonstrated
the advantage of our algorithm in comparison with the existing
mean-field free filters.

This paper is organized as follows. Section II introduces
the background on circulant matrix. Section III presents the
CMF filtering framework in detail. Both simulation and real
experiments are performed in Section IV. Finally, the paper is
concluded in Section V.

II. BACKGROUND ON CIRCULANT MATRIX

Circulant Matrix [12] is a prevalent mathematics tool that
connects signal processing with machine learning algorithms.
It explores the circulant structure of the signal in space domain
and enables the usage of Fast Fourier Transform (FFT) to ex-
haustively extract virtual training samples by cyclic shift from
an original sample. In particle filtering framework, sampling
and correction are allowed to be performed in Fourier domain,
which makes the computational cost independent of the sample
size. Suppose the original sample is represented by a vector
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x ∈ Rm, its corresponding circulant matrix C(x) ∈ Rm×m is

C(x) =


x1 x2 . . . xm
xm x1 . . . xm−1

...
...

. . .
...

x2 x3 . . . x1

 (1)

Define the cyclic shift operator T : Rm → Rm by

T (x1, x2, . . . , xm) = (xm, x1, . . . , xm−1) (2)

The jth row of C(x) is T j−1x. Since cyclic shift operator
can model any signal translation in space domain [13], the
circulant matrix C(x) densely represents all translated versions
of the original sample x. Figure 1 shows some generated
virtual samples based on an original sample.

Consider two vectors x, x′ ∈ Rm, with fourier transform
x = F(x), x’ = F(x′), x, x’ ∈ Cm. The circulant matrices
C(x), C(x′) have the following properties [14]

C(x)C(x′) = C(x′)C(x) (commutation)

αC(x) + βC(x′) = C(αx+ βx′) (linearity)

CT (x)x′ = F−1(x ◦ x’) (correlation)

C(x)C(x′) = C(F−1(x ◦ x’)) (matrix product)

C−1(x) = C(F−1(x−1)) (matrix inverse)

CT (x) = C(F−1(x?)) (matrix transpose)
(3)

where ◦ denotes the Hadamard product and x? is the complex
conjugation of x. According to the Convolution Theorem [12],
circular convolution of two vectors x, x′ satisfies

x ∗ x′ = F−1(x ◦ x’) = CT (x)x′ (4)

III. PROPOSED SCHEME

A. Mean-Field-Dependent Model
A mean-field-dependent system is a dynamical system that

involves the probability measure of the state variable in the
transition kernel. Consider a process (xt)t with the following
transition probability

P(xt+1 ∈ X |xt,Lxt
) (5)

the next state xt+1 depends on not only the current state xt, but
also its probability distribution Lxt

. Suppose the process (yt)t
denotes the observation with conditional probability P(yt ∈
Y|xt,Lxt), our goal is to estimate the state variable xt based
on the observation history y1, . . . , yt. To solve this problem,
we introduce the posterior filtering distribution

mt(X ) = P(xt ∈ X |y1, . . . , yt) (6)

Once mt is computed, we get a complete representation of
the uncertainty. Assume the filter mt(X ) has Mckean-Vlasov
property, that is, the current state distribution mt depends
only on the last one mt−1 and the current observation yt.
This is crucial when the data sequence is high-dimensional,
because the filter is independent of the entire observation
history y1, . . . , yt−1, and thus it is suitable for online imple-
mentation. The system states can be updated recursively with
consecutively incoming observations.

Fig. 2: Recursive State Generation

1) Prediction and Recursive State Generation: The evolu-
tion of probability distribution of the state xt is

Lt+1(X ) =

∫
x∈X

P(xt+1 ∈ X | x,Lxt
)Lxt

(dx) (7)

Then the state distribution from time step 0 to t can be
generated recursively given the initial state distribution and
the transition probability.

P((xt′)0≤t′≤t ∈
∏
t′≤t

Xt′) =

P(x0 ∈ X0)

t−1∏
t′=0

P(xt′+1 ∈ Xt′+1|xt′ ,Lxt′ )

(8)

The joint probability of state-observation (xt, yt) evolves as

P((xt, yt) ∈ X × Y|xt−1,Lxt−1 , yt−1) =∫
(xt,yt)∈X×Y

Kt−1(xt−1,Lxt−1
;xt)lt(xt,Lxt

; yt)

∗ µxt
(dxt)νyt

(dyt)

(9)

where Kt is the mean-field state transition kernel at time
step t, lt is the likelihood of state x and its distribution Lx

given observations y, µxt and νyt are distributions of signal
and observation noise. Given the initial distribution, system
states are generated recursively based on these probability
distributions. The procedure is shown in Figure 2.

The filtering distribution mt solves the following relations:

〈φt,mt〉 =
1

m̄t

∫
m0(dx0)

∏
t′<t

(lt′Kt′)φ(xt′) (10)

m̄t = 〈1,mt〉 :=

∫
m0(dx0)

∏
t′<t

(lt′Kt′)

〈φt+1,mt+1〉 =
〈mt, (ltKt)φt+1〉
〈mt, lt〉

(11)

Thus, the new state is predicted by xt+1 ∼ mt+1(X ), where

mt+1 = 〈
[
lt(xt,Lxt

; yt)Lxt
(dxt)∫

lt(x′t,Lxt
; yt)Lxt

(dz′t)

]
,Kt〉 (12)

2) Decomposition of the State Space: We define the state
space of the entire system as a graph G = (V, E), where
node v ∈ V represents observed zones, and edges E indicate
their relationships. When the system cardinality V is huge,
the signal becomes high-dimension. We encounter big data
problem in two aspects: one is the computational burden,
the other is error accumulation and propagation. Assume the
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graph is sparse ‖E‖ � ‖V‖2, and the unconnected nodes are
independent with each other; each signal-observation (xt, yt)
has a projection on the nodes (xvt, yvt)v∈V . The set of nodes
V can be decomposed into o highly independent components:

V := V1 ⊕ V2 ⊕ . . .⊕ Vo (13)

Thus, the signal-observation space over the network can be
decomposed as

∏o
i=1 Xv∈Vi and

∏o
i=1 Yv∈Vi . For node v,

define its adjacent set as N (v). The state evolution at v is
independent of other nodes except N (v). Since sampling,
prediction and correction are performed within these highly
independent zones Vi in parallel, we can reduce the computa-
tional cost and control the error propagation.

B. An Online Learning Problem

In the Sequential Monte Carlo approaches with importance
sampling, higher weights are assigned to more confident esti-
mations. However, in most cases we cannot directly observe
estimation errors, since the observations are noisy, partial
and unreliable. Here, we model it as an online supervised
learning problem and derive a method to construct a confident
evaluator for each candidate hypothesis. Suppose (xt, yt) is a
pair of state and observation at time t, xt ∈ Rm, yt ∈ R,
we learn a regression function f : Rm → R from a set
of i.i.d. samples (xi,t, yi,t) drawn from an underlying joint
distribution P , i ∈ {1, . . . , n}. For a new hypothesis xj , the
confident estimator corresponds to output of the regression
function f(xj). We normalize the confident value to (0, 1) so
that it can be interpreted as the probability that xj being an
optimal estimation. Thus, sample weights can be updated by
the regression function.
P can be assumed to be some parametric distributions (e.g.

mixture of Gaussians), or to be distribution-free with some
mild conditions such as smoothness and compactness. Then f
is learnt by minimizing the regression error:

min
f

n∑
i

L(f(xi), yi) + λΩ(f) (14)

Here we use square error L(f(x), y) = (f(x) − y)2, linear
regression function f(x) = wTx and L2-norm Ω(f) = ‖w‖2.
Thus, the learning problem becomes ridge regression:

min
w

n∑
i

(wTxi − yi)2 + λ‖w‖2 (15)

it has closed-form solution [15]

w = (XXH + λI)−1Xy (16)

and the dual space solution is

w =

n∑
i

αixi = Xα

α = (G+ λI)−1y

(17)

where X ∈ Rm×n is data matrix with xi in column i,
y ∈ Rn×1 with elements yi, XH = (X∗)T is the Hermitian
transpose, and G = XHX is the Gram matrix.

1) Generating Virtual Samples by Cyclic Shift: In standard
Sequential Monte Carlo methods, samples are generated from
the estimated posterior distribution to approximate the filtering
density. Typically, the performance can be increased by adding
more samples, but this will lead to high computational cost. On
the other hand, supervised learning also needs enough training
samples to improve the regression accuracy and generalization
ability. There is always some tradeoff between increasing the
sample size and keeping a low computational cost. Since the
optimal states are limited, there are finite positive examples,
but the number of negative samples is infinite. The traditional
way is to randomly choose only a few samples [16], or by
hard-negative mining [17]. Samples near the optimal state are
labeled +1 and those far away are labeled −1 [18].

Here, we perform dense sampling in the space domain
and generate sufficient training examples by translation of the
original samples. Based on the property of circulant matrix,
for each real positive example xi ∈ Rm, all possible virtual
negative samples are generated by cyclic shift and stored in
the circulant data matrix C(xi). Instead of binary labeling,
we use continuous labels: set y to be 1 at the optimal state
position, and gradually decay to 0 as distance increases. Based
on the properties of circulant matrix (Equation 3), the optimal
solution of ridge regression expressed in (15) becomes:

w = F−1(
x ◦ y

x∗ ◦ x + λ
) (18)

The dual solution is

α = F−1(
y

gxx + λ
) (19)

where x, y are fourier transform of x, y, and gxx is the first
row of the Gram matrix G = XHX = C(gxx). Since the
computation contains only FFT and element-wise production,
the cost is reduced from O(m3) to O(m logm).

2) Batch Correction in Fourier Domain: In the correction
stage, we want to assign larger weights to more confident
hypotheses, and use the weighted sum as new estimation. For
dense sampling, the naive way is to evaluate the hypotheses
iteratively. In statistics, correlation indicates dependence or
association of two sets of data. Let x and x′ be two vectors,
the correlation is defined as a kernel vector kxx

′
with elements

kxx
′

j = κ(T j−1x, x′) (20)

where κ could be RBF kernel or Gaussian kernel. Instead of
calculating single estimation zi iteratively, we perform batch
correction on the entire set of candidate hypotheses z. We
update the sample weights by computing the regression output

weight ∝ f(z) = F−1(F(kxz) ◦ F(α)) (21)

C. Correlative Mean-Field Filtering Framework
There are four operations in the filtering framework: de-

composition D, sampling Sn, prediction P and correction
C, where n is the sample size. As shown in Figure 3, the
correlative mean-field filter (CMF) algorithm is performed
iteratively to generate the estimated filtering distribution m̂(X )

m̂n
t+1(X ) = Ct+1DPS

n, m̂n
t (X ) =: Ôn

t+1m̂
n
t (X ) (22)
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Fig. 3: Flow diagram of the CMF algorithm

IV. EXPERIMENTS

A. Illustration of the Mean-Field filters

Problem Formulation: Consider the following state dynam-
ics of mean-field type where the mean-field term is through
the second moment:

xk+1 = xk + αxk(1− E[x2
k])∆t+ σxk

√
k∆tN(0, 1)

x0 given in L2,

yk = x2
k + βxk +

√
k∆tN(0, 1)

(23)

where N(0, 1) denotes a normalized centered Gaussian distri-
bution and ∆t is the time step, α, β are positive real numbers.

Proposition 1. Assume that the initial random variable x0

satisfies E[x2
0] < +∞. Then, the second moment can be

computed recursively (online)

E[x2
k+1] = {(1 + α∆t(1− Ex2

k))2 + σ2k∆t}E[x2
k]

= E[x2
0]

k∏
l=1

{(1 + α∆t(1− Ex2
l ))2 + σ2l∆t}

(24)
The second moment of xk is bounded by

E[x2
k] ≤ E[x2

0]ck∆t, (25)

for some 0 < ck∆t < +∞, for any k such that k∆t ≤ T.
Moreover the observation process yk solves

Eyk = Ex2
k + βExk.

Proof. The proof follows directly from state dynamics model.

Steady State Analysis: The deterministic system is obtained
when σ vanishes. It is given by

xk+1 = xk + α∆txk(1− x2
k) = (1 + α∆t)xk − α∆tx2

k

x0 given in R
(26)

Since α > 0, ∆t > 0, the set of steady states yields the zeros
of x(1 − x2). It has one unstable equilibrium at x = 0 and
two stable equilibria (x = ±1). With parameters ∆t = 0.1,
α = 1, σ = 10−3, β = 10−2, η = 10−2, the evolution of the
system in total time T = 30 is shown in Figure 4a.

1) Mean-Field Free Model: We use particle filter (PF) as
a mean-field free model to estimate the system state. Here we
substitute the expectation term E[x2

t ] directly with x2
t , thus

the system dynamic becomes mean-field free:

dx = αx(1− x2)dt+ σxdwt (27)

In discrete form it is:

xk+1 = xk + αxk(1− x2
k)∆t+ σxk

√
k∆tN(0, 1) (28)

For each particle, it evolves independently, and the optimal
states are estimated by the weighted average based on the
observations. However, when β is small, either the quadratic
term or the noise will be dominant. Therefore the observation
is misleading and the sign information of xk is missing, which
causes the failure of PF estimator (Figure 5a). Take expectation
on both sides of Equation (28) we have:

E[x2
k+1] = E[xk + αxk(1− x2

k)∆t+ σxk
√
k∆tN(0, 1)]2

= E[xk + αxk∆t− αx3
k∆t+ σxk

√
k∆tN(0, 1)]2

= E[(xk + αxk∆t− αx3
k∆t)2] + E[(σxk

√
k∆t)2]

= (1 + α∆t)2E[x2
k] + α2∆t2E[x6

k] + k∆tσ2E[x2
k]

− 2α∆t(1 + α∆t)E[x4
k]

(29)
When the system is mean-field dependent, PF is risky because
E[x2

k+1] evolves in terms of the unstable factor E[x6
k] and

E[x4
k].

2) Mean-Field Dependent Model: In mean-field dependent
model, we need to compute the expectation term E[x2

k]
explicitly:

E[x2
k+1] = E[(xk + αxk(1− E[x2

k])∆t

+ σxk
√
k∆tN(0, 1))2]

= E[((1 + α∆t)xk − α∆txkE[x2
k]

+ σ
√
k∆tN(0, 1)xk)2]

= E[(1 + α∆t)2x2
k − 2α∆tx2

k(1 + α∆t)E[x2
k]

+ α2∆t2x2
k(E[x2

k])2]2 + E[σ2k∆tN2(0, 1)x2
k]2

= [(1 + α∆t)2 + σ2k∆t]E[x2
k] + α2∆t2E3[x2

k]

− 2α∆t(1 + α∆t)E2[x2
k]

(30)
Thus, E[x2

k] can be generated offline, and then used for
updating xk+1. Using mean-field filter (MF), the estimator will
not diverge (Figure 5a).

However, sometimes we cannot compute the mean-field
term directly, the second approach is to estimate the ex-
pectation term by generating virtual particles. The expected
value E[x2

k] will be approximated by the ensemble mean
1
M

∑M
j=1 x

2
j,k, where M is the number of virtual particles.

The virtual particle system is given by:

xi,k+1 = xi,k + αxi,k(1− E[x2
i,k])∆t+ σxi,k

√
k∆tN(0, 1)

= xi,k + αxi,k(1− 1

M

M∑
j=1

x2
j,k)∆t

+ σxi,k
√
k∆tN(0, 1)

= xi,k + αxi,k(1− 1

M
x2
i,k −

1

M

∑
j 6=i

x2
j,k)∆t

+ σxi,k
√
k∆tN(0, 1)

(31)
where xi,k denotes the outer real particles, and xj,k denotes
the inner virtual particles, i, j ∈ {1, . . . ,M}. At each iteration,
the virtual particles have the same distribution as xi,k. The
particle approximated mean-field filter (PMF) is stable, but
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(a) System State (b) Observation

Fig. 4: The evolution of system state with five different initial
states: x0 = 0,±1.5,±10−5

(a) State Estimator (b) Mean Squared Error

Fig. 5: Time evolution of the real state and their estimators
using MF, PF, PMF and PSO [9]

cannot be implemented in parallel as PF, since at each iteration
communication is necessary for virtual particle generation. We
can see in Figure 5b, the error of PMF is larger than MF, which
is caused by ensemble approximation. Finally, we repeated the
experiment 1000 times, and set particle number M = 100. The
numerical results are summarized in TABLE I.

TABLE I: Numerical Results

Filters Time (s) Global MSE Failure (%) Model
PF 0.0093 29.82 50.6 mf-free

PSO 8.0392 1.178 50.4 mf-free
MF 0.0042 0.0248 0 mf-dependent

PMF 0.0030 0.6164 0 mf-dependent

B. Correlative Mean-Field filter in Vehicle Tracking

In this section we implement CMF on a real vehicle tracking
application. The input data is video sequences captured by 12
traffic cameras mounted on a highway network in Maryland.
They form a local traffic surveillance system where each
camera monitoring a part of the road. Our goal is to track
the positions of multiple vehicles simultaneously.

1) System Model: In video sequence, following a target
given its initial location is a filtering problem [20]. In our case,
the initial position is unknown. Since the camera is stationary,
foreground detection [21] is performed as a pre-processing
step to estimate the initial state distribution m0(X ). System
state xt = (pt, st, vt)

T denotes the vehicle position, size and
velocity in frame t, and observation yt is the region of interest.
The state transition kernel Kt(xt,Lxt

;xt+1) is modeled by the

motion law, thus the system dynamic is

pt+1 = pt + vt + np

st+1 = st(Es(pt+1)/Es(pt) + ns)

vt+1 = αvt + (1− α)Ev(pt+1) + nv

(32)

where np, ns, nv are random Gaussian noise. Es, Ev are mean-
field terms that represent the expected vehicle size s and
velocity v at position p. The observation model p(yt|xt,Lxt)
indicates the probability of an observed region being a target
under tracking. We use correlative mean-field filter to estimate
next frame state xt+1 based on current observation and vehicle
appearance model obtained from an online learning process.

2) Tracking Pipeline: In the tth frame, we first generate
n samples from the estimated state distribution m̂t(X ). The
ith sample is represented by a data vector xi,t ∈ Rm,
which can be pure pixel intensities or HOG features [22]. Its
corresponding label yi,t ∈ R is set to 1 at the estimated target
position p̂0,t, and smoothly decay to 0 by a Gaussian function

yi,t = exp(− 1

σ2
‖p̂0,t − pi,t‖2),∀i = 1, . . . , n (33)

Then we train the vehicle appearance model by solving a
ridge regression problem defined in (15). In frame t+ 1, new
candidate positions are predicted by the transition dynamic.
Then, each candidate is evaluated by comparing the region of
interest with the vehicle appearance model. In correction stage,
sample weights are set by the output of the regression function.
Finally, new state distribution m̂t+1(X ) is updated by the
histogram of the sample weights, and new target position
p̂0,t+1 is estimated as the one with the maximum weight.

3) Mean-Field Terms: The mean-field terms Es, Ev are
initialized by taking expected value of the prior distribution,
which is obtained from history data or human experience.
During tracking, the mean-field terms are updated in the
system dynamic with new estimations ŝt, v̂t.

In tracking, there are three explanations for the introduce of
mean-field terms. First, in mean-field free models the system
state evolves only based on the previous state, which may
accumulate error in case the dynamic model is inaccurate.
Second, there’s only a small part of the image that contains
vehicles, i.e. the road zone, while most false alarms are waving
trees or moving clouds. Third, the vehicle’s speed varies with
lanes, e.g. the traffic flow is dense and slow near intersections.
So the distribution of vehicle position and speed should reflect
these intuitions and be spatially distinct. In light of these
reasons, it is reasonable to learn state distributions in a data
driven way and embed mean-field terms into system model.

4) Performance Evaluation: The performance is evaluated
by average successful tracking rate [23]. We compare our
approach with particle filter [24] modified by [19], where the
particle number is n = 1000 (in CMF n = 10). TABLE
II shows performance comparisons on 12 traffic videos. The
average successful tracking rate of CMF reaches 86.3%, which
is much higher than 81.5% of MSPF [19]. Experimental results
in Figure 6 also demonstrate the advantage of our approach.
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Fig. 6: Performance comparison; top row: MSPF [19], bottom row: CMF

TABLE II: Performance comparison on 12 video sequences.

Video MSPF (%) CMF (%) Video MSPF (%) CMF (%)
#1 86.8 88.7 #7 71.8 84.7
#2 84.6 86.8 #8 87.6 89.0
#3 90.3 92.0 #9 83.5 85.5
#4 80.6 86.8 #10 80.4 83.0
#5 75.7 88.2 #11 73.9 78.5
#6 83.9 90.0 #12 79.4 82.4

V. CONCLUSION

This paper proposed a novel correlative mean-field filtering
framework for sequential and spatial data processing. The
framework has four stages: decomposition, sampling, pre-
diction and correction. By incorporating the mean-field term
into system transition model, a robust estimator is developed,
which is verified in the simulation. We study the properties
of circulant structure in space domain and build a bridge
between filtering and supervised learning. Dense sampling and
batch correction are performed in Fourier space, which greatly
increases the sample size with almost the same computation
cost. Experimental results on real video data show that the
proposed algorithm performs favorably against the state-of-
the-art method.
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